Minimal Model Program
Leaning Seminar.
Week 29
Contents:

- Cox rings.
- Mari dream spaces.

Mori dream spaces:
In \mathbb{D}_{k}^{n}, every Werl dwisor $W \sim d H$, then $H^{0}\left(\mathbb{P}^{n}, W\right) \simeq H^{0}\left(\mathbb{P}^{n}, \partial H\right) \simeq \mathbb{I}\left[x_{0}^{d}, \ldots, x_{n}^{d}\right]$ fire \mathbb{X}-modle

Thus, we have that IK-ruy.
© $H^{0}\left(\mathbb{P}^{n}, W\right) \simeq \mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$
$[W] \in \operatorname{cic}$ p $\left.^{n}\right)$
Any hypersurfice in $\mathbb{L}^{\text {n }}$ conerpondo to an homogeneoous poly of The homogencous coirdintes of \mathbb{L}^{n}.

$$
\operatorname{Spee}\left(\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]-\{(0, \ldots, 0)\}\right) / \mathbb{C}_{m}=\mathbb{P}^{n} .
$$

Free + fig class group:
X normal pros variety with $C(C X) \xlongequal{\mathbb{Z}}$ free and fog $K \leqslant W \operatorname{Div}(x), \quad K \longrightarrow C I C X)$ is an isomorphic.
Then we define:

$$
\operatorname{Cox}(x)=\bigoplus_{W \in K} H^{0}(X, W)
$$

We multiply sections in $\mathbb{t K}(x)$.
Example: $\operatorname{Cox}\left(\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}\right) \simeq \mathbb{C}\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$. graded by the bi-dyriee on x and y.

Cox ring: Assume $C \mid C X)$ is jg
$K \leqslant W \operatorname{Div}(x)$ sorjecting onto $C I(x)$
K 。 the kennel of $K \xrightarrow{c} C I(x)$.
$\chi: K_{0} \rightarrow \mathbb{K}(X)^{*}$ be a homomorphism yielding.

$$
\operatorname{div}(\chi(E))=E
$$

for all $E \in K_{0}$.

$$
\mathcal{L}=\left\langle 1-\chi(E) \mid E \in k_{0}\right\rangle
$$

$D \in K$, we define $S_{D}:=\theta_{x}(D)$
The Cox sheaf of X is defined bo be $R=S / 2$

$$
R=\bigoplus_{D \in C(x)} R_{D} \quad R_{D^{\prime}}:=\pi\left(\bigoplus_{D^{\prime} \in C^{-1}([D])} S_{D^{\prime}}\right) .
$$

The Cox ring $\operatorname{Cox}(x):=I(x, R)$ which admits a CI CX) -grading

Index one cover:

$$
\begin{aligned}
& D \text { on } X, L^{m D \sim 0} \\
& \operatorname{Spec}\left(O_{x} \oplus \theta_{x}(D) \theta \ldots \oplus \theta_{x}\left(\left(_{m-1}\right) D\right)\right) \\
& \left.O_{x}(i D) \otimes \theta_{x} C_{j} D\right)=\left(\theta_{x}\left(C_{i+j}\right) D\right) \\
& \quad{ }^{\prime \prime} \\
& Y \xrightarrow{ } \quad X \quad
\end{aligned}
$$

This is an example of a "Cox ring".
Main questions:

- Is (I CX) fog? yes 2
- Is $C_{0 x}(x)$ fo?

Remark: The set of isomorphisms of $\operatorname{Cox}(x)$ depends on $X: K_{0} \longrightarrow \mathbb{K}(X)^{x}$. The set of isomorphism classes is in bijection to

$$
E x t^{1}\left(\operatorname{c|c}(x), O(x)^{*}\right)
$$

Mori dream space:
MHP " " Mon Theory.

Def: A normal prog variety X is a MDS if
(1) X is Q-factonal and $P_{i c}(X)_{Q}=N^{\prime}(X)_{\text {i }}$
(2) $\operatorname{Nef}(x)$ is the affine hull of finitely many semiample line bundles
(3) There are finitely many small Q-futonal models $f_{i}: X \longrightarrow X_{i}$ such that each X_{i} satisfies (2) and

$$
\operatorname{Mov}(x)=U_{i} f_{i}^{*} \operatorname{Nef}\left(x_{i}\right)
$$

Proposition: Let X be a MDS. Then the following conditions hold:
(1) Mon's program can be carried out for any frisor on X :
(a) D is a pseuto-eff on X, there exists a sequence

$$
X \rightarrow X_{1} \ldots X_{2} \ldots, \ldots \ldots X_{k}
$$

of $\mid D$-fivisonial contractions l and $\quad D$-flips, so that the stat transform of D on X_{k} is semiample
 $C . D<0, \quad \rho\left(x / x^{\prime}\right)=1$

(b) D is not preff on X. There exists 2 sequence

$$
X_{1} \cdots X_{1} \ldots X_{2} \cdots \cdots X_{k}
$$

$$
Z
$$

such that each $X_{i} \rightarrow X_{i+1}$ is a D-flip, or a D - divisorial contraction. Moreover $X_{k} \rightarrow Z$ is a D_{k} - Mors fiber space D_{k} is the stool transform of D in X_{k}.
(2). There are finitely many birabionzl contrzetions

$$
\begin{aligned}
g_{i}: X \rightarrow Y_{1} \quad \text { with } & \text { E. } 2 \text { MDS sit: } \\
\overline{N E}^{1}(X) & =\bigcup_{i} g_{i}^{*}(\mathbb{N e f}(Y,)) \times \operatorname{ex}\left(g_{i}\right)
\end{aligned}
$$

In particular, $\mathbb{N E}^{\prime}(X)$ is rat polyhedral.
(3) The chambers $f_{i}^{n}\left(\operatorname{Nef}\left(x_{i}\right)\right)$ together with their faces, give 2 fan structure of $\operatorname{Mov}(x)$.
These cones are in one-to-one correspondence with rational maps $j: X \ldots Y$ with Y normal + pros.

$$
\text { via }[g: x \rightarrow \gamma] \longmapsto\left[f^{*}(\operatorname{Nef}(r)) \subseteq \operatorname{Mov}(x)\right]
$$

Example of a MDS:

$$
\mathbb{D}^{3}, \quad X=B l_{p, 7} \mathbb{D}^{D^{3}} \quad \rho_{x}=3 .
$$

I be the strict transform of the line through $p \& f$.
Normal bundle of 2 is $\Theta_{\mathbb{p}}(-1)^{\oplus 2}$; This curve can be confrectal via a small contraction. $f: X \rightarrow Y$. \hat{X} be the blow-up of 2 and $E \cong \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$ and its normal bundle $\bigcirc(-1,-1)$. We can contract E in the second direction to obtain a smooth blow-down:

Example of MDS:
$\tilde{X} \longrightarrow \mathbb{P}^{\prime}$ is 2 smooth morphim with fiber $\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$.
(birabioml pros $\mathbb{D}^{3} \cdots \mathbb{D}^{\prime}$ from the line through p and q)
The morphism $\tilde{X} \longrightarrow \mathbb{D}^{\prime}$ factors in two different ways through $2 \mathbb{W}^{\prime}$-bundle $\widetilde{X} \longrightarrow \mathbb{F}_{\perp}$.

z-dim faces: $X \xrightarrow{\text { id }} X, \quad X \longrightarrow \tilde{X}$
2-dim faces:
corresponds to $X \longrightarrow I$
correponto to $X \rightarrow B l_{q} \mathbb{P}^{2}$ \&

$$
X \rightarrow B l p \mathbb{P}^{2}
$$

corresponds to $X \rightarrow \mathbb{E}_{1}$.

z-dim faces: $X \xrightarrow{\text { id }} X, \quad X \longrightarrow \tilde{X}$
2-dim facers

$$
\text { corresponds to } X \longrightarrow Y
$$

F corresponds to $X \rightarrow B \mid{ }_{q} P^{2} \&$

$$
X \rightarrow B 1 p \mathbb{P}^{2}
$$

\longrightarrow correspond to $\quad X \longrightarrow \mathbb{E}_{1}$.

Morl tream spzce:
Thm (Hu \& Keel 2000's): X is a MDS it and only it $\operatorname{Cox}(x)$ is finitey generited. Good geometric properbies of MDS:

- Any nef divisor is semiample
- Amy pseff tivior is effective
- The imge of a MDS is also a MDS

$$
\mathbb{G}_{m}^{k} \times A
$$

Abelian quasi-torsor. X normal varrety.

$$
\left(\left(K^{*}\right)^{k} \times A .\right.
$$

$Y \longrightarrow X$ is an abelian quasi-toror it there exisls
H a quisi-tores acting on Y satisfying the following condibown
(i) $H_{0} \leqslant H, \quad Y^{\prime}=Y / H_{0} \longrightarrow X$ is quesi-élile,
(ii) $U_{Y} \subseteq Y_{1}, U_{Y^{\prime}} \subseteq Y^{\prime}$ big open sets so thit.
$U_{Y} \longrightarrow U_{T^{\prime}}$ is étale locilly a trivial H_{0}-bundle
(ivi) $\quad\left(O(y)^{H} \simeq O(x)\right.$.
cober
quar-tons
finite covers $\sim \sim$ universal cover. abelian quasi-torsors $\because \sim$ spectrom of $\operatorname{Cox}(x)$.

Proposition: The spectiom of the Cox ring of X is an universal abelian ques:- torrov.
Corollary: Q-points of X correpond bo \mathbb{Z}_{1}-points of Spee $\left(C_{o x}(x)\right)$.

$$
X, \quad \operatorname{Cox}(x), \quad \operatorname{Cox}(\operatorname{Cox}(x)), \ldots
$$

height of Q-points of X increses with the iteratios. Choractenstic geasi-tows
Corollary: $\mathbb{I}^{\prime}=\operatorname{Spec}(\mathbb{I} \mathbb{E}[\mathrm{Cl}(x)])$ of a MDS x Then $X \simeq(\operatorname{Spec}(\operatorname{Cox}(X))-V) / / \mathbb{I}^{\prime}$.
clored of catim $\geqslant 2$
Any Werl divisor on X comerponas to a homaganeous regular fonction on $\operatorname{Cox}(x)$.

Local Morn dream spaces:

$$
\operatorname{Cox}(x)=\underbrace{\substack{D C C(x)}} H^{\circ}(x, D)
$$

$(E, p), \quad C(C, U)$ is not $f \cdot g$ for $2 n y \tilde{U}^{\stackrel{x}{\infty}} \subseteq E$
(X, x), you try to use the local group $\operatorname{CI}\left(X_{x}\right)$

$$
\operatorname{Cox}\left(X_{i} x\right)=\bigoplus_{D \in\left(I\left(X_{x}\right)\right.} H^{0}\left(X_{x}, D\right)
$$

Example: $\left\{(x, y, z, \omega) \mid x^{2}+y^{3}+z^{3} \omega=0\right\}=X$

$$
(0,0,0,0)-x
$$

Sing curve $C=\{x=y=z=0\}, c \in C$ general.
X étale around c is isomorphic to $\mathbb{C} \times E_{0}$ sing.
The class group $C \mid\left(X_{x}\right)$ is trivial., $C \mid C(x)$ is trivial. However, $\pi_{1}\left(X^{5 m}\right)$ is the binary tclahedral group.

$$
\pi_{1}\left(X^{5 m}\right)^{2 b} \simeq \mathbb{Z}_{3}
$$

Solution: Define $\operatorname{Cox}(X ; x)=\bigoplus_{D \in \operatorname{CI}\left(X_{x}^{h}\right)} H^{0}\left(X_{x}^{h}, D\right)$

Definition: The sing $\left(X_{i x}\right)$ is a local MDS if Cox $\left(X_{i x}\right)$ is ess of finite type.

Thm (BCHMO6): A Fano variety is a MDS
Thm (BM21): A klt sinulariby is a local MDS

